Big Data: как применять и анализировать большие данные?
Сегодня, одним из самых популярных и инновационных направлений в IT является применение Big Data. Именно огромные массивы информации, которые, как правило, неупорядочены, и технологии по работе с ними - это термины, которые обозначают этот тренд. Открытие новых возможностей для бизнеса - главное преимущество использования Big Data. Такие компании могут предоставлять своим клиентам персонифицированные продукты и сервисы. В этом материале мы расскажем об основных технологиях анализа больших массивов данных и о том, какие пользы они могут принести.
Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.
Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.
Анализ методов хранения данных
Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.
При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.
Перед нами завершающий и наиболее значимый этап работы с большими данными — их анализ. Он играет ключевую роль в использовании потенциала Big Data в бизнесе. Именно анализ помогает избавиться от ненужного и выделить наиболее ценную информацию для компании.
Существует множество методов анализа больших данных. Охватить все из них в рамках данной статьи невозможно, поэтому мы расскажем о наиболее важных.
Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.
Data Mining: извлечение полезной информации из разнородного массива
Data Mining - это метод, который позволяет извлекать полезные закономерности из различных источников информации. Суть метода заключается в том, что он позволяет выявить связи и зависимости, которые не видны на первый взгляд.
В рамках этого метода решаются задачи по классификации, кластеризации и анализу отклонений. Классификация позволяет определить принадлежность объекта к определенному классу, кластеризация - объединение объектов в группы в зависимости от степени их сходства, а анализ отклонений помогает выявлять аномалии и выбросы.
Таким образом, Data Mining является эффективным методом для извлечения полезной информации из различных источников и может применяться в различных областях, где необходимо обрабатывать большие объёмы данных.
Нейронные сети
Алгоритмы машинного обучения во многом похожи на работу человеческого мозга. Они осуществляют анализ входных данных и выдают результат в соответствии с определенным алгоритмом. Нейросети, используемые в машинном обучении, могут быть очень умными. Например, они могут распознавать лица на фотографиях или определять недобросовестные транзакции по заданным признакам.
В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.
За счет применения Big Data анализ статистики значительно уточняется. Важно, чтобы выборка данных была максимально представительной, в этом случае результаты анализа будут более точными и достоверными.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какими характеристиками обладает Big Data?
Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:
1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.
2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.
3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.
С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).
Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.
Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.
Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.
Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.
Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.
Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.
Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.
В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.
Активное использование больших данных в маркетинге позволяет анализировать поведение клиентов, используя историю их покупок, поисковых запросов, посещений и лайков в социальных сетях. Такой подход позволяет маркетологам определить предпочтения пользователей и на основе этого предлагать им товары и услуги, которые имеют для них наибольшую ценность. С помощью Big Data можно создавать более адресную и эффективную рекламу.
Amazon был первым сервисом, который запустил систему рекомендаций, основанную на анализе пользовательских запросов. В процессе работы системы учитывались не только история покупок и поведение клиентов, но и разнообразные внешние факторы, такие как сезон или предстоящие праздники. Как результат, система рекомендаций стала отвечать за более чем треть всех продаж на платформе Amazon.
Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.
Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.
Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.
В современном мире внедрение новых технологий является необходимым фактором для совершенствования производственных процессов. Одной из самых актуальных технологий на данный момент является Big Data, которая удается помочь предотвратить простои оборудования и снижение производительности. Интеллектуальные системы на основе этой технологии применяются для сбора и анализа данных с приборов мониторинга, средств измерения, логических контроллеров. Обработанные данные позволяют видеть, насколько работоспособно оборудование, предотвращать поломки, выявлять и исключать из процесса неэффективные операции, экономить материалы и потребляемую энергию, как это указано на сайте https://controleng.ru/.
Аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу по управлению предприятием, основанную на применении больших данных. Она стала ключевым элементом автоматизации работы семидесяти служб компании и позволила сделать управление аэропортом более прозрачным и эффективным. Особенностью платформы является возможность получения оперативной и полной информации по любому текущему процессу, что повышает качество работы предприятия. Плюсом является то, что внедрение платформы упрощает сотрудничество аэропорта с авиакомпаниями и оптимизирует планирование ресурсов, включая их техобслуживание и ремонт терминалов. Согласно прогнозам из АНО «Радиочастотный спектр», использование такого «умного сервиса» может улучшить техническое состояние оборудования и обеспечить оборачиваемость запасов на 10%, а уровень сервиса по поставкам — на 20%. Информация была размещена на сайте https://rspectr.com/.
Прогнозирование с помощью обработки больших объемов данных становится все более популярным. Основная идея заключается в создании моделей и прогнозировании будущих событий и поведения людей на их основе. Такой подход способен помочь в различных сферах, таких как планирование рекламных кампаний, определение спроса на услуги и товары, а также помогать взаимодействовать с клиентами.
Преимущество использования предсказательной аналитики на основе Big Data не ограничивается только сферой маркетинга и торговли. В сфере образования, например, она может помочь определить вероятность успеха учеников и эффективность программ.
Прогнозная аналитика уже нашла свое применение в авиации. Airbus планирует использовать предиктивное обслуживание к 2025 году для уменьшения случаев, когда некоторые самолеты не могут вылететь из-за выявленных неисправностей. Другая компания, Lufthansa Technik, уже внедрила платформу, которая прогнозирует сроки замены деталей.
Таким образом, использование прогнозной аналитики на основе больших объемов данных может иметь практическую пользу в различных отраслях, увеличивая эффективность процессов и помогая предсказать будущие события и тренды.
Небольшая статистика
Консалтинговая компания Accenture провела исследование в 2014 году, опросив руководителей 1000 компаний из разных стран мира. Было обнаружено, что 60% из них уже внедрили системы анализа больших данных и были довольны результатами. Участники опроса отметили создание новых продуктов и услуг, увеличение количества способов заработка, улучшение клиентского опыта, а также повышение лояльности клиентов среди основных преимуществ Big Data. Источник: https://www.tadviser.ru/.
Фото: freepik.com